

Properties of Atoms and the Periodic Table

Chapter 16 and 17

Atomic Components

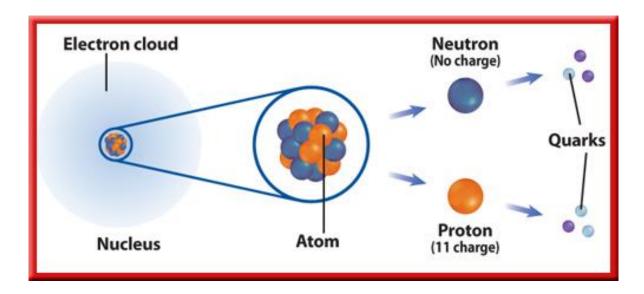
- Matter anything that has mass and takes up space
- An element is matter that is composed of one type of **atom**, which is the smallest piece of matter that still retains the property of the element.

Scientific Shorthand

- Elements are abbreviated in scientific shorthand
 - Chemical symbols consist of one capital letter or a capital letter plus one or two smaller letters.
 - Comes from elements name, sometimes in Latin or Greek. Ex: Silver (Ag = Argentium (German)
 - 1st letter is capital; 2nd letter is lower cased

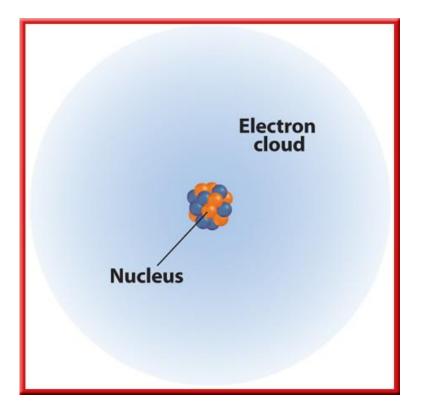
Symbols of Some Elements

Element Symbol	Element Symbol
Aluminum Al	Iron Fe
Calcium Ca	Mercury Hg
Carbon C	Nitrogen N
Chlorine Cl	Oxygen O
Gold Au	Potassium K
Hydrogen H	Sodium Na


ATOMS

- Atoms are composed of particles called protons, neutrons, and electrons.
- Proton (+) and Neutrons (0) are in the nucleus
- Electrons (-) are in the electron cloud

Structure of the Atom


Atomic Components

• Protons and neutrons are found in a small **positively** charged center of the atom called the **nucleus** that is surrounded by a cloud containing electrons.

The Electron Cloud Model

 An electron cloud is the area around the nucleus of an atom where its electrons are most likely found.

Atomic Mass

- The nucleus contains most of the mass of the atom because protons and neutrons are far more massive than electrons.
- The mass of a proton is about the same as that of a neutron approximately

Subatomic Particle Masses											
Particle	Mass (g)										
Proton	1.6726×10^{-24}										
Neutron	1.6749×10^{-24}										
Electron	9.1093×10^{-28}										

Protons Identify the Element

- Atomic Number = #of protons in an atom
- The sum of the number of protons and neutrons in the nucleus of an atom is the mass number

Mass Number

• The average atomic **mass number** of an atom is the sum of the number of protons and the number of neutrons in the nucleus of an atom.

Element	Symbol	Atomic Number	Protons	Neutrons	Mass Number	Average Atomic Mass*
Boron	В	5	5	6	11	10.81 amu
Carbon	с	6	6	6	12	12.01 amu
Oxygen	o	8	8	8	16	16.00 amu
Sodium	Na	11	11	12	23	22.99 amu
Copper	Cu	29	29	34	63	63.55 amu

Average Atomic Mass Number

• If you know the mass number and the atomic number of an atom, you can calculate the number of neutrons.

number of neutrons = atomic mass number – atomic number

Element	Symbol	Atomic Number	Protons	Neutrons	Mass Number	Average Atomic Mass*
Boron	В	5	5	6	11	10.81 amu
Carbon	с	6	6	6	12	12.01 amu
Oxygen	ο	8	8	8	16	16.00 amu
Sodium	Na	11	11	12	23	22.99 amu
Copper	Cu	29	29	34	63	63.55 amu

Isotopes

- Not all the atoms of an element have the same number of neutrons.
- Atoms of the same element that have different numbers of neutrons are called **isotopes**.
- 1) Different isotopes have different properties
- 2) name of element followed by the mass # identifies the isotope
- EX: **Boron -10** or Boron -11

Identifying Isotopes

- The **average atomic mass** of an element is the weighted-average mass of the mixture of its isotopes.
- For example, four out of five atoms of boron are boron-11, and one out of five is boron-10.
- The average atomic mass is closest to its most abundant isotope

Organizing the Elements

- *Periodic* means "repeated in a pattern."
- In the late 1800s, Dmitri Mendeleev, a Russian chemist, searched for a way to organize the elements.
- When he arranged all the elements known at that time in order of increasing atomic masses, he discovered a pattern. There were blank spaces for missing elements that had not yet been discovered

Improving the Periodic Table

- In 1913, the work of Henry G.J. Moseley, a young English scientist, led to the arrangement of elements based on their increasing atomic numbers instead of an arrangement based on atomic masses.
- The current periodic table uses Moseley's arrangement of the elements.

Organizing the Elements

• The **periodic table of elements** is arranged by increasing atomic number and by changes in physical and chemical properties.

Organizing the Elements

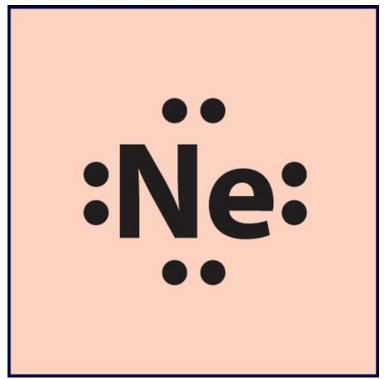
- <u>Groups/Families</u>: The vertical columns in the periodic table: numbered 1 through 18.
- Elements in each group have similar properties.
- Have the same # of electrons in their outer energy level this determines the chemical properties of the elements.
- <u>Periods/Rows</u> the horizontal rows that contain increasing # of protons and electrons as you move left to right.

	1					Pe	eriodi	ic Ta	able	of th	e El	emer	nts					18
	Hydrogen					• -												2 Helum
	1.008	2	I										13	14	15	16	17	4.003
	J Lithium	4 Be Beryllum											5 Boron	Carbon	7 N Nitrogen	8 Oxygen	9 F Fluorine	Ne Neon
	6.941	9.012											10.811	12.011	14.007	15.999	18.998	20.180
	Na Sodium 22.990	12 Mg Magnesium 24.305	3	4	5	6	7	8	9	10	11	12	13 Aluminum 26.982	I4 Silcon 28.086	15 P Phosphorus 30.974	16 Sulfur 32,056	17 Cl Chlorine 35.453	18 Argon 39.948
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34		36
	K Potassium 39.098	Calcium 40.078	Scandium 44.956	Ti Titanium 47.867	Vanadium 50.942	Cr Chromium 51.996	Manganese 54.938	Fe Iron 55.845	Cobalt 58.933	Nickel 58.693	Cu Copper 63.546	Zn Zinc 65.38	Gallum 69.723	Germanium 72.631	As Arsenic 74.922	Selenium 78.971	Br Bromine 79.904	Krypton 84.798
Ī	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
	Rb Rubidium 84.468	Strontium 87.62	Y Yttilum 88.906	Zr Zirconium 91.224	Niobium 92,906	Mo Molybdenum 95.95	Tc Technetium 98,907	Ruthenium 101.07	Rhodium 102,906	Pd Palladium 106.42	Ag Silver 107.868	Cd Cadmium 112.414	In Indium 114.818	Sn ^{Tin} 118.711	Sb Antimony 121.760	Te Telulum 127.6	lodine 126.904	Xe Xenon 131.294
	55	56	57-71	72	73	74	75	76	77	78	79	80	81	82	83	84		86
	Ceslum 132.905	Ba Barlum 137.328	Lanthanides	Hafnium 178.49	Ta Tantalum 150.948	Tungsten 183.84	Re Rhenium 186.207	Os Comium 190.23	Ir Iridium 192.217	Pt Platinum 195.085	Au Gold 196.967	Hg Mercury 200.592	TI Thailum 204.383	Pb Lead 207.2	Bismuth 208.980	Polonium [208.982]	At Astatine 209.987	Rn Radon 222.018
8	87	88	89-103	104	105	106	107	108	109	110	Ш	112	113	114	115	116	117	118
	Fr	Ra		Rf	Db	Sg Seaborgium	Bh	Hs	Mt	Ds	Rg	Cn	Uut	FI	Uup	Lv	Uus	Uuo
	Francium	Radium 226.025	Actinides	Rutherlordium	Dubnium		Bohrium	Hassium	Meitnerium	Darmstadtium	Roenigenium		Ununtrium	Flerovium	Ununpentium		Ununseptium	Ununoctium
L	223.020	226.025		[261]	[262]	[266]	[264]	[269]	[268]	[269]	[272]	[277]	unknown	[289]	unknown	[298]	unknown	unknown

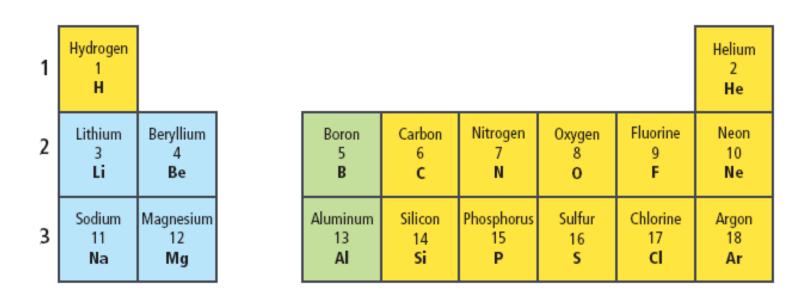
57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	ТЬ	Dy	Ho	Er	Tm	Yb	Lu
Lanthanum	Cerium	Presectymium	Neodymium	Promethium	Samarium	Europium	Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thulium	Ytterbium	Lutetium
138.905	140.115	140.908	144.243	144.913	150.36	151.964	157.25	158.925	162.500	164.930	167.259	168.934	173.055	174.967
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Ac	Th	Pa	υ	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
Actinium	Thorium	Protactinium	Uranium	Neptunium	Plutonium	Americium	Curium	Berkelium	Californium	Einsteinium	Fermium	Mendelevium	Nobelium	Lawrencium
227.028	232.038	231.035	238.029	237.048	244.064	243.061	247.070	247.070	251.080	[254]	257.095	258.1	259.101	[262]

Alkali Metal	Alkaline Earth Transition Metal	Basic Metal Seminetal	Nonmetal	Halogen	Noble Gas	Lanthanide	Actinide
--------------	---------------------------------	-----------------------	----------	---------	-----------	------------	----------

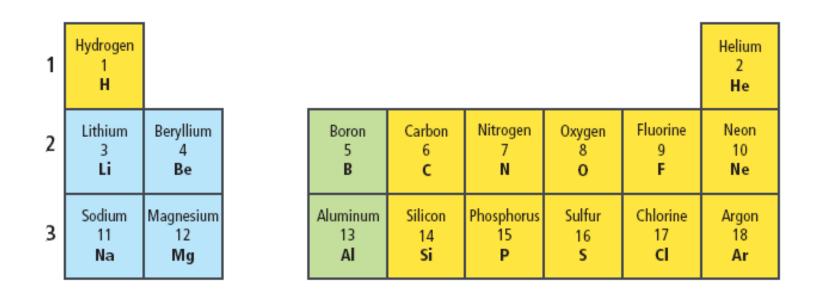
C2015 Todd Heimenstine eclencenoise.org


Same Group—Similar Properties

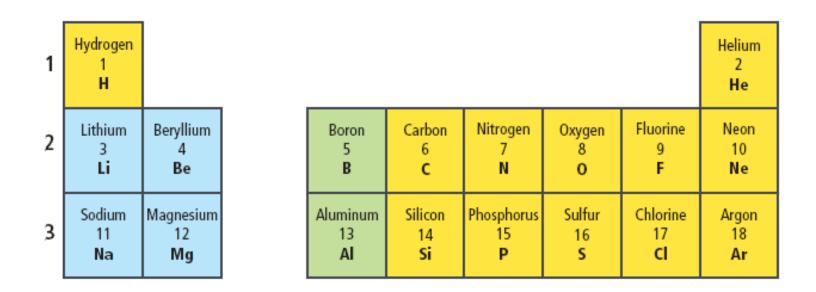
- All halogens have seven electrons in their outer energy levels.
- A common property of the halogens is the ability to form compounds readily with elements in Group 1.
- The Group 1 element, sodium, reacts easily with the Group 17 element, chlorine.
- The result is the compound sodium chloride, or NaCl—ordinary table salt.


Same Group—Similar Properties

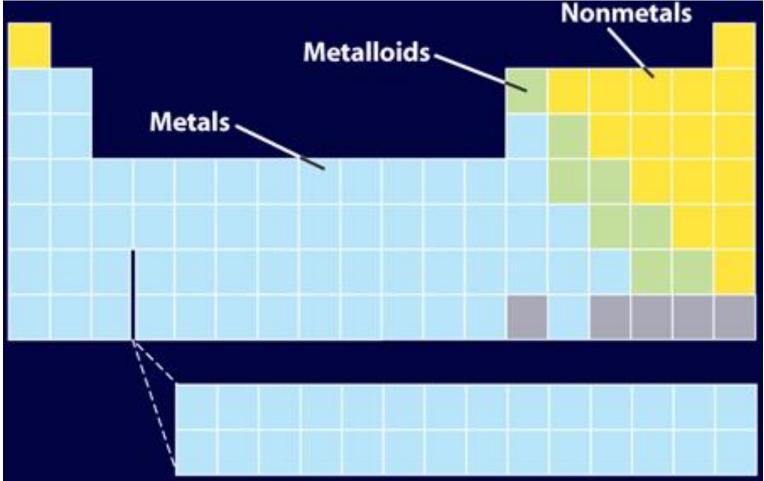
- Not all elements will combine readily with other elements.
- The elements in Group 18 have complete outer energy levels.
- This special configuration makes Group 18 elements relatively unreactive.


Rows on the periodic table

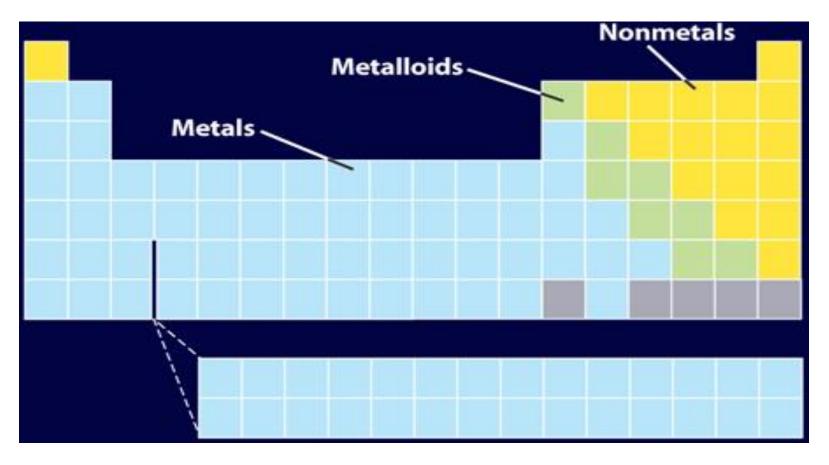
- Remember that the atomic number found on the periodic table is equal to the number of electrons in an atom.
- The first row has hydrogen with one electron and helium with two electrons both in energy level one.
- Energy level one can hold only two electrons. Therefore, helium has a full or complete outer energy level.


Rows on the periodic table

- The second row begins with lithium, which has three electrons—two in energy level one and one in energy level two.
- Lithium is followed by beryllium with two outer electrons, boron with three, and so on until you reach neon with eight outer electrons.


Rows on the periodic table

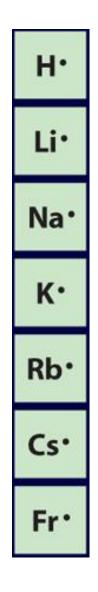
- Do you notice how the row in the periodic table ends when an outer level is filled?
- In the third row of elements, the electrons begin filling energy level three.
- The row ends with argon, which has a full outer energy level of eight electrons.


Regions on the Periodic Table

• All of the elements in the blue squares are metals.

Regions on the Periodic Table

• Those elements on the right side of the periodic table, in yellow, are classified as nonmetals.


Regions on the Periodic Table

• The elements in green are metalloids or semimetals.

Electron Dot Diagrams

- An electron dot diagram uses the symbol of the element and dots to represent the electrons in the outer energy level.
- Electron dot diagrams are used also to show how the electrons in the outer energy level are bonded when elements combine to form compounds.

Metals

Properties of Metals

 Metals are good conductors of heat and electricity, and all but one are solid at room temperature.

• Found on the left side of the stair step

3	1 100000 10000 10000	2 Boylun	7	PE	RIOE	ріс т/	ABLE	OFT	'HE E	LEMI	ENTS	8	13 heres	14 Catern Catern	15	Comm	11	1 Ex.5	
7	11 Ber Gale 601														N T	0 15.000	1000	14.7 2.10	/
3	Na CS	Magnatium Ng 24,00	3	-	- 5	/ *	/ 1	/ *	/ *	10		10	8.00049 31 31.00 31.00	Ses 9 8 8 8 8 8	Phosphones Phosphones Robite Robite	3 H ~ 10	50 0 S	No.	
4	Robertson K X0000	Calcum Calcum Galari 41.079	Sandun 31 32 41/03	Name 200 490	Yeatun y NSQ	Charman 34 () 30 () 31 ()	Angeres Angeres Scill	100 24 74 55.05	Column 20 Co	43.0 43.0 121	Con Con	2m 25 25 61.435	Gabus Ga Gabus Gabus	Generation II Ce 7344	Answei 11 An 74.800	Meter M C M C M C	States States Thates	as a la	
5	Notion 20 30 FSRF	1004040 10 10 10 10 10 10 10 10 10 10 10 10 10	78%A H Y H K6	20090,0 20 10204	Nobus 41.00 Nb 10.00	900 960 9134		Allwan 41 Null Null	Rollers 45 86 No.XX	Maduri Million 1040	Shar Ag Notae	Cabran Cabran Cabran	ndun B C DADE	56 56 16/10	Anteniny Shill Shill	Silven Si Te	80+e 10 10	12.2	
6	2000 20 10085	840 H 22	900 1200	NUS NO	Territor The Control of Control o	NO W ULH	References	A Contain A Contain Contain Contain Contain Contain Contain Contain Contain	77 () 10 10 10 20	Pierum R HILON	Gent 72 Au 196,967	10 10 18 19 20.70	тына 6 п 26Ш	ин Р Р 202	Norman N N Solatel	Polentum BA DOR	Anterna 85 At (210)	10.88	1
Ţ	Pesqua B B CD B		Admin R C	124 () 124 () 241	Dubesure Dib Dib Dib	Sealergium 15K (-) 5g (0HR	Bolinan Militi Diriti Diriti	Herium HB O G77	Notiverum NO CO LIVID	Demosture 100 015	Ununurium # 111 Usu (212)	Unation # 112 Unb Oto Oto		Undergradie 114 Und (200		## 1%		** 11	
			1	i	-	/	/	/	/	1	1	/	1	/	/	/	/	/	7
			Lav	tunide series	Carlum Carlum Carlum Milling	None-Party of the	All Carlot All All All All All All All All All Al	Providence Providence Providence Original Original	Smaturi G Sm UBN	Ereptan To To 10304	Gadelineum Gel HELH	Tetten ST Th	Drependure Ma Dy Malaxie	Ho Ho	a a a a aran	Bulue al In UE206	Notes and Notes		
			,	ctnide selles	Thatan No (11) Th 202,218	90,000 90,000 90,000 201000	N CI U CI 14409	Heptumum Hil () Hip SHS	North State	Amarican Millio Gilli	8888	Brielan Sf (*) BR (H5)	Coltration St O CITE	annenan M O Dh OSD	Innun Im Im Ohn	NextRelation Not Co Md 1140	No Contraction	Lingian In Dig	

Metals

Other Properties of Metals

- Metals also reflect light (called luster)
- Metals are **malleable**, which means they can be hammered or rolled into sheets.
- Metals are also **ductile**, which means they can be drawn into wires.
- Have high melting points and boiling points
- Have 1-3 electrons in outer energy level
- Lose electrons to become positive ions

Group 1 the Alkali Metals (Li, Na, K, Rb, Cs, Fr)

- 1) 1 valence electron.
- 2) Soft metals, can be cut with a knife.
- 3) VERY reactive.
- 4) Low melting points.
- 5) React quickly with the oxygen in the air.
- 6) Never found pure in nature.
- 7) React violently in water.
- > Exception is Hydrogen: Not a member of the Alkali Metals, it is a gas (nonmetal), Lightest substance known, 93% of all atoms in the universe is hydrogen

Group 1 Alkali Metals

- loses electron easily and are found as positive ions
- combine with negative ions to form salts
- low densities
- Good conductors of heat and electricity
- Some are rare and radioactive (nucleus breaks down)
- Shiny, malleable, ductile

Group 2 the Alkaline Earth Metals (Be, Mg, Ca, Sr, Ba, Ra)

- 1) 2 valence electrons
- 2) Highly reactive
- 3) Beryllium has such high boiling point it is used in the heat shields on the space shuttle.
- 4) Magnesium (white light of fireworks) and calcium are the most common. Ca found in cement and used in water softeners.
- 5) lose electrons to become positive charged

Group 2 Alkaline Earth Metals

- Calcium found in bones and teeth, shells of sea animals
- Magnesium is used in planes, cars, spacecraft and ladders
- Radium is radioactive was once used to treat cancer

Metals

Transition Elements

- **Transition elements** are those elements in Groups 3 through 12 in the periodic table.
- They are called transition elements because they are considered to be elements in transition between Groups 1 and 2 and Groups 13 through 18.

Groups 3-12 the Transition Metals or Elements

1)All are similar.

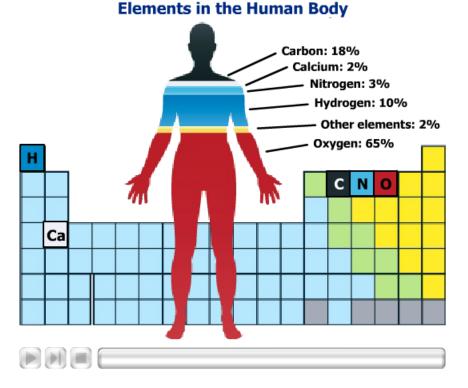
- 2) The number of valence electrons varies.
- 3) Many elements have multiple # of valence electrons.
- 4) Occur in nature as uncombined elements and form colored compounds

Transition Metals

- shiny
- neighboring elements may have same properties
- iron, cobalt and nickel are magnetic (form Iron Triad used to make steel)
- Ores form transition metals are usually found, minerals containing large amounts of metal
- Copper, silver, and Gold are so stable that they are found as free elements – referred to as coinage metals

Inner Transition Metals Lanthanide and Actinide Series "Rare Earth elements"

- Fits in between Groups 3 and 4 in periods 6 & 7 Rare Earth Metals
- Separate rows on table
- Lanthanide series period 6 elements 58-71
- Actinide series-period 7-elements 90-103
- Lanthanides occur in only small amounts in the earth's crust
- Actinides are synthetic
- Lanthanides have steel-like properties, used in lasers and provide red color on TV screen
- **Actinide Series**
- 1) All radioactive and unstable
- 2) **Uranium** is the largest, heaviest nature element.
- 3) Most are man-made or synthetic elements.

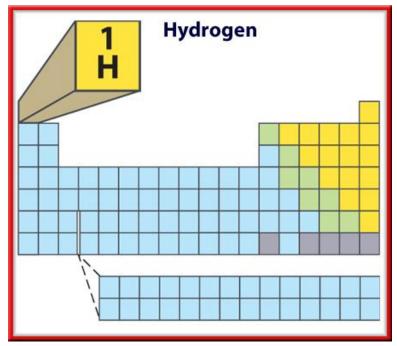

Nonmetals

Properties of Nonmetals

• Most of your body's mass is made of oxygen, carbon, hydrogen, and nitrogen.

 Calcium, a metal, and other elements make up the remaining four percent of your body's mass.

Nonmetals –

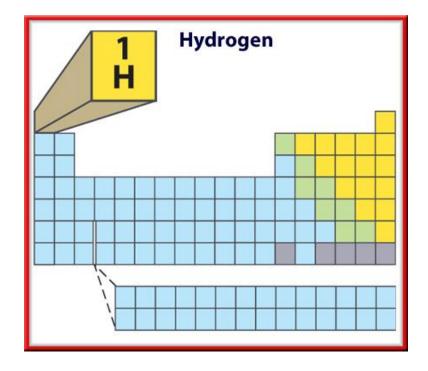

elements that usually are gases or brittle solids at room temperature

- 1) All are Found on the **right** side of the periodic table except Hydrogen.
- 2) **Dull** luster. (Dull and brittle)
- 3) **Insulators** -> poor conductors.
- 4) Brittle, shatter, break under pressure.
- 5) Gain electrons when bonding to form negative ions.
- 6) Can form **covalent** bonds -> electrons are shared to form the bonds.
- 7) The building blocks of living things are nonmetals C, N, O, S, P
- 8) Many are gases at room temperature
- 9)Many electrons in outer energy levels that are held tightly

Nonmetals

Hydrogen

- If you could count all the atoms in the universe, you would find that about 90 percent of them are hydrogen.
- When water is broken down into its elements, hydrogen becomes a gas made up of diatomic molecules.



Hydrogen

• A **diatomic molecule** consists of two atoms of the same element in a covalent bond.

• EX: Hydrogen Gas

Nonmetals

Hydrogen

- Hydrogen is highly reactive.
- A hydrogen atom has a single electron, which the atom shares when it combines with other nonmetals.
- Hydrogen can gain an electron when it combines with alkali and alkaline earth metals.
- The compounds formed are hydrides.

Group 17 the Halogens "salt-makers" (F, Cl, Br, I, At)

- 1) 7 valence electrons.
- 2) VERY reactive, fluorine is the most reactive of all elements.
- 3) Never found **pure** in nature.
- 4) Reactive with metals to form salts, for example table salt- NaCl.
- salt former EX: Sodium chloride
- Fluorine is the most reactive of all elements, used in fluoride toothpaste and the non-stick coating of pans
- Chlorine green gas
- **Bromine** only nonmetal that is a liquid at room temperature
- Iodine when heated changes directly to a purple vapor (sublimation)

Group 18 the Inert or Nobel Gases (He, Ne, Ar, Kr, Xe, Rn)

- 1) 8 valence electrons.
- 2) NON **REACTIVE** ALWAYS found **pure** in nature.
- 3) Helium is rare on Earth, 2nd most abundant element in the universe.
- 4) Neon and argon is used in signs.

Noble Gases

Colorless gases

- •Do not readily combine with other elements chemically inactive
- •All exist in the earth's atmosphere
- •Helium lighter than air, used in balloons

Metalloids

- 1) Found over and under the zigzag line.
- 2) Have properties of both metals and nonmetals.
- Silicon and germanium → dull, brittle shatter and conductor.
 - Exception is Aluminum: considered a metal.
- 4) Shiny solids but not as much luster
- 5) Semiconductors conducts electricity and heat better than nonmetals
- 6) Can form ionic or covalent bonds

Group 13 the Boron Family (B, Al, Ga, In, Tl)

- 1) **3** valence electrons.
- 2) **Boron** is a metalloid used to make Borax (laundry product to soften water), all others are **metals**.
- 3) Aluminum is the third most abundant element on Earth, most abundant metal.
- 4) Gallium melts in your hand.
- Boron is the only nonmetal
- Aluminum light, soft, good conductor, most abundant metal in the earth's crust

Group 14 the Carbon Family (C, Si, Ge, Sn, Pb)

- 1) 4 valence electrons.
- 2) Carbon forms over 5 million compounds.
- Silicon is the 2nd most abundant element in the Earth's crust.
- 4) Silicon and Germanium are used in electronics.
- 5) Lead used in water pipes before it was discovered to be poisonous.

Carbon Group

- **Carbon** is the only nonmetal
- Carbon is found in diamonds and pencil lead (graphite)
- Silicon and germanium metalloids, silicon makes up 60 of earths crust, found in rocks
- Tin and lead metals, steel food cans are lined with tin, lead is poisonous

Mixed Groups

The Carbon Group

- The crystal structure of silicon dioxide is similar to the structure of diamond.
- Silicon occurs as two allotropes. Allotropes, which are different forms of the same element, have different molecular structures.

Group 15 the Nitrogen Family (N, P, As, Sb, Bi)

1) **5** valence electrons.

Nitrogen is the most abundant element in air, 78.
4th most abundant element in your body

- 3) Phosphorus used in weapons. (has 3 allotropes)
- 4) **Bismuth** has a low melting point used for "triggers" in automatic sprinkler systems.

Nitrogen Group

- Nitrogen and Phosphorus nonmetals
- Nitrogen is a gas, essential in the formation of proteins
- Phosphorus in bones, teeth, and DNA, very reactive, used for matches
- Arsenic and antimony metalloids
- Arsenic pesticides
- Antimony used to strengthen lead

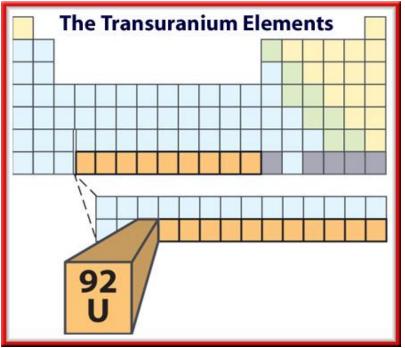
Group 16 the Oxygen Family (0, S, Se, Te, Po)

- 1) 6 valence electrons.
- 2) Highly reactive.

3) **Oxygen** is the most common element on Earth, 50% Earth's crust, 20% of air and 33% of water.

Oxygen Group

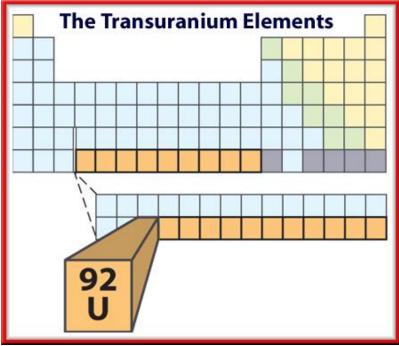
* Oxygen - most abundant element, combined with silicon in rocks, produced by plants during photosynthesis, exists in air as a diatomic molecule


» **Sulfur** - used in rubber and sulfuric acid

» **Selenium** - used in light meters, solar cells, and photocopiers

Mixed Groups

Transuranium Elements


- Elements having more than 92 protons, the atomic number of uranium, are called **transuranium elements**.
- These elements do not belong exclusively to the metal, nonmetal, or metalloid group.

Mixed Groups

Transuranium Elements

• All of the transuranium elements are synthetic and unstable, and many of them disintegrate quickly.

