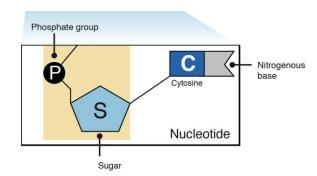

DNA, RNA, Protein Synthesis


Components of DNA

Nucleotide: monomer of DNA

- Sugar-deoxyribose
- Phosphate Group
- Nitrogenous Base
 - -Adenine
 - -Thymine
 - -Cytosine
 - -Guanine

Structure of DNA

- Two Strands twist to form a double helix
- Backbone of alternating sugar and phosphate molecules
- Interior consist of base-pairs of nitrogen bases

(complementary base pairing)

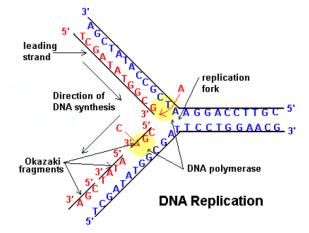
A-T

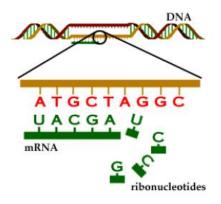
and

C-G

Hydrogen bonds holds the nitrogen bases together

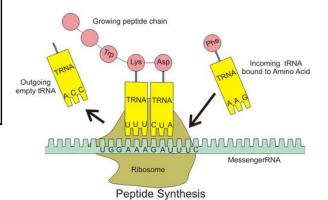
Genetic code is common to all organisms


- All living organisms contain A,T,C,G
- All living organisms use that DNA to make protein from the same 20 amino acids



Replication

- 1. The double helix unwind
- 2. The hydrogen bonds between the nitrogen are broken to separate the two strands
- Each original strand is used as a template to build a new strand. Complementary base pairing occurs: A-T and C-G
- 4. Two molecules of DNA are produced: half original and half new. This is known as semi-conservative replication.

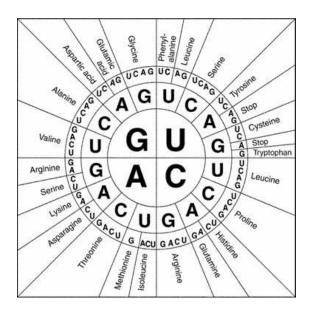


Transcription

- The use of DNA as a template to make RNA (Adenine match with Uracil)
- Occurs in the nucleus

1		I			
DNA		RNA			
Deoxyribose	Sugar	Ribose			
Adenine (A) Thymine (T) Cytosine (C) Guanine (G)	Nitrogen Bases	Adenine (A) Uracil (U) Cytosine (C) Guanine (G)			
Two	Number of strands	One			
Nucleus	Location	Nucleus and cytoplasm			
5' end 3' end 6 0H	Diagram	5' end P R G R G R G A HO R A 3' end			

Translation


- 1. The use of RNA to make protein
- 2. It occurs at the Ribosome in the cytoplasm of the cell
- 3. It requires the use of 3 types of RNA:
- -Messenger RNA (mRNA); copy of DNA's message to code protein; contains codons (3 base sequences)
- -Transfer RNA (tRNA): carries amino acids to the ribosomes; contains anti-codons (3 base sequences that pair up with mRNA)
- -Ribosomal RNA (rRNA): makes up structure of ribosome
- -Anti-codon on tRNA pairs with mRNA codon to bring proper amino acid into the ribosome. Amino acids are connected until a stop codon is reached.

Example

DNA: AAA-ATA-CGC-TAG

mRNA: UUU-UAU-GCG-AUC

Amino Acids: Phenylalanine-Tyrosine-Alanine-Isoleucine

	U		С		Α		G		
Ü	UUU	Phenylalanine phe	UCU	Serine	UAU	Tyrosine tyr	UGU UGC	Cysteine cys	C
	UUA	Leucine leu	UCA	ser	UAA	STOP codon	UGG	STOP codon Tryptonphan trp	A G
С	CUU CUC CUA CUG	Leucine leu	CCU CCC CCA CCG	Proline pro	CAU CAC CAA CAG	Histidine his Glutamine gin	CGU CGC CGA CGG	Arginine arg	C A G
Α	AUU AUC AUA	Isoleucine ile Methionine met (start codon)	ACU ACC ACA ACG	Threonine thr	AAU AAC AAA AAG	Asparagine asn Lysine lys	AGU AGC AGA AGG	Serine ser Arginine arg	U C A G
G	GUU GUC GUA GUG	Valine val	GCU GCC GCA GCG	Alanine ala	GAU GAC GAA GAG	Aspartic acid asp Glutamic acid glu	GGU GGC GGA GGG	Glycine gly	C A G